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Electron-beam acceleration by cyclotron-autoresonance interaction
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Using the cyclotron autoresonance, electron beams gyrating along a static magnetic guide field can be
accelerated to high energies by interacting with a high-intensity laser field. The energy exchange of the
beam-laser system satisfies overall energy conservation.
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I. INTRODUCTION

Current concepts on charge-particle-beam acceleration
often rely on the high field gradient of laser as the energy
source. The configurations for acceleration can, in gen-
eral, be divided into two categories as those that use a
background dispersive medium, such as a plasma, and
those that operate in free space. The second one has the
advantage that parameter controls of the dispersive medi-
um in the presence of the laser field can be neglected.
One of the promising schemes of the latter category is to
use a low-intensity transverse static magnetic [1-3] or
electric [4-7] field that alternates in space with increas-
ing irregular period to accelerate longitudinally propaga-
ting electrons along the laser beam. The interaction is
based on the linear force in the single-particle equation of
motion of the electrons. As expected, the energy gain or
energy loss of the electron is sensitive to its initial phase
with respect to the laser field. Although it is able to ac-
celerate the beam electrons as a whole, this type of in-
teraction leads to a large energy spread [1]. The feedback
on the wave equation of the laser field is neglected. This
is acceptable for very-low-density beams where pump de-
pletion needs not to be considered. For high-density
beams, energy saturation becomes an important issue.

Here we consider a cyclotron-autoresonance interac-
tion scheme which is comprised of an electron beam un-
dergoing helical trajectories along an externally imposed
high-intensity axial static magnetic guide field. A circu-
larly polarized electromagnetic wave with the same hand-
edness propagating along the beam axis can interact with
the beam resonantly through the cyclotron autoresonance
effect. In the maser mode, a high-energy-density electron
beam is used as the pump to generate coherent elec-
tromagnetic waves [8—11]. In the accelerator mode, the
intense laser field is used to boost the beam electrons
[12,13]. Unlike the static transverse field scheme, this in-
teraction is a nonlinear parametric interaction among the
laser field, the beam electrons, and the axial magnetic
field that generates the helical beam trajectory. For this
reason, a strong axial magnetic field is required. To re-
ward the cost of a high field, the cyclotron-autoresonance
interaction inherently yields a relatively cold high-energy
beam.
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II. CYCLOTRON-AUTORESONANCE INTERACTION

From the equation of motion, an electron beam of per-
pendicular and parallel momentum densities ymnv, and
ymnv, with respect to the magnetic guide field B=B;2
and energy density ymnc?, where ¥ is the Lorentz factor
and n is the beam density, describes a constant amplitude
time-independent helical trajectory given by

v=v,(—sin6, +co0s6,0)+v,Z , (1)

where 0=(Q/yv,)z=k,z is the azimuthal angle of the
trajectory on the xy plane and Q=eB,/mc is the cyclo-
tron frequency. The trajectory defines a self-generated
right circularly polarized wiggler with spatial period
A, =2m/k,. Let us consider a laser field with frequency
o, and wave number k; characterized by the vector po-
tential A, given by

A, = A(sin(¢; +¢),cos(¢; +4),0) , (2)

where ¥, =(k,z —w,t) is the harmonic phase and ¢ is the
relative phase. Here 4 and ¢ are slowly varying func-
tions of z and ¢. The corresponding electric and magnetic
fields are

E,=(Aw, /c)cos(y,+¢), —sin(y, +¢),0) , (3)
B, = Ak (sin(y; +¢),cos(¢, +¢),0) . (4)

The resonant interaction between the electron beam and
the laser field takes place when the Doppler shifted wave
frequency sensed by the electron equals the spatial
wiggler frequency

(wy—k,)=k,v,=Q/y . (5)
By considering the relation

v (1=Bi—B)=1 ()
and the wave dispersion relation w; =ck, we have

o,=[(1+B,)/(1+y’BHIrQ , )

where Eq. (7) relates the wave frequency to the cyclotron
frequency and the beam parameters. Regarding o; and
Q as fixed, the above condition leads to a quadratic equa-
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tion in ¢ with
y=B{(Q/0,)+[(Q/w,)*—B1"?}) ,

which shows that the resonant condition can be satisfied
for real y only for beams with 8, <(Q/w;).

Under the resonant condition of Eq. (5), the radiation
damping suffered by the electrons is of prime importance.
From the energy equation

d
E(ymcz)z —ev-E, ,

the evolution of the electron energy is governed by

%y=ﬁ’lwsa sin(0+y,+¢) , (8)

where a =e A /mc? is the normalized vector potential and

d /dt is the total time derivative. From the momentum

equation
d

E(ymv)=—e

>

Es+%vX(B+Bs)

the longitudinal component reads
gt—(yBZ)ZBlcksa sin(0+vy,+4¢) . 9)

Comparing Egs. (8) and (9), we have
(E —cp,)=const , (10)

where E=ymc? and p,=ymuv,. Rewriting the resonant
condition in terms of E and p,, it reads
(E —cp,)=mc?Q /o, =const, which is the same as Eq.
(10). This shows that, once the resonant condition is met,
the energy and the longitudinal momentum of the beam
vary in such a way that the resonance is self-maintained.
As the energy y increases, the wiggler period A, in-
creases accordingly so that the resonance is locked in.
This is the main feature of the cyclotron autoresonance.
We note that the interaction between the electron beam
and the wave field is dictated by the ponderomotive phase
¥=(6+1),). Taking a total time derivative on ¢ and re-
calling that tan6=p, /B,, we have

d 1 .
E*Z*Aw+;aﬂ%—h%M$m¢+w, (11)
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FIG. 1. The beam energy (&) (lower curve) and the vector
potential 4(&) (upper curve) are plotted against the interaction
length £ with 8,=0.09 and (@, /Q)=0.1.
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FIG. 2. The beam energy y(&) (lower curve) and the vector

potential 4 (&) (upper curve) are plotted against the interaction
length £ with 8, =0.10 and (w,, /Q)=0.1.

where Ao=[(w,—k,v,)—Q/y] is the
mismatch.
As for the wave field, we start from the wave equation

2 2
3 11]

frequency

4
T

3z ¢ ot

where the term on the right-hand side represents the per-
pendicular electron current. Using the eikonal approxi-
mation, the slowly varying amplitude and relative phase
are given by

9. .. 9 =—1(p? i +

E» +c % ]a Hap, /0,){ B, sin(¥+¢)) , (12)

al|24cd ¢=—Lw? /o,){B, cos(yp+¢)) (13)
ot az 2 Tpe M s AL ’

The interaction between the beam electrons and the wave
field is through the ponderomotive phase 3, which is
periodic in space over a distance A, =2w/k,. In steady
state, it is therefore sufficient to follow the evolution of a
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FIG. 3. The beam energy y(£) (lower curve) and the vector
potential A4 (&) (upper curve) are plotted against the interaction
length £ with 8,=0.11 and (@, /Q)=0.1.



51 ELECTRON-BEAM ACCELERATION BY CYCLOTRON-. .. 651

FIG. 4. The beam energy y(§) (lower curve) and the vector
potential 4 (&) (upper curve) are plotted against the interaction
length £ with 8,=0.098 and (@, /Q)=0.1

group of N sample electrons over such an interval A,.
The initial phases v;, with i =1,2,3,...,N, can be as-
sumed to be uniformly distributed over the interval
(—, +). The angular brackets on the right-hand side
of Eqgs. (12) and (13) stand for the phase averages over an
ensemble of such N electrons. This allows a statistical
description for the beam acceleration so that the results
are not sensitive to the initial conditions.

Manipulating Egs. (8) and (12) in steady state, we get
the conservation of [w§a2+w§eﬁz(y)], which can be
written as

1
E—E2c+(y)mnc2vz=const . (14)

The apparent discrepancy of a factor of J on the Poynt-
ing vector arises from the fact that we are dealing with
circularly polarized wave of Eq. (3), where E is the ampli-
tude of each component in the x and y directions. There-
fore E is equivalent to the root mean squared amplitude
of a corresponding linear wave. The conservation of the
total energy flux consisting of the electron energy density
flux S,=ymnc?, and the wave energy density flux
S, =k2 A’ /47 enables us to analyze pump depletion.
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FIG. 5. The beam energy y(£) (lower curve) and the vector
potential A (&) (upper curve) are plotted against the interaction
length £ with 8,=0.098 and (w,. /)=0.03.

III. BEAM ACCELERATION

Let us define a reference length L =c /Q and a refer-
ence frequency () to normalize distance z to L with
E=z/L, frequency o to Q, and time ¢ to Q~!. As an ex-
ample for the cyclotron-autoresonant acceleration, we
consider a laser intensity of S, =2.8X10'? W/cm? with
wavelength A, =100 pum. This gives a normalized vector
potential @ =0.1. Taking a guide field B, =100 kG, the
reference length and frequency are L =1.6X 10~ 2 cm and
Q=1.76X10'? rad/s. Considering an electron beam
with density » =10' cm ™2 such that (@, /Q2)=0.1 and
energy ¥ =10, the initial beam energy density flux is
S,=2.4X 10" W/cm?. The beam energy y(£) and the
vector potential A4(£) in units of cm G are plotted as a
function of the interaction length £ in Figs. 1-3. For
B,=0.09, Fig. 1 shows a weak coupling between the
beam and the laser field. The beam energy rises from an
initial y =10 to ¥ =20 at £=2000. For 8,=0.10, Fig. 2
shows strong coupling between the beam and the laser
field with linear energy growth for the beam throughout
the whole interaction length reaching y=85. For
B,=0.11, Fig. 3 shows that the interaction is already out-
side the linear growth region. The interaction is oscilla-
tory with an overall average growth on the beam energy.
In Fig. 4 we return to the linear growth case with
B,=0.098 and extend the interaction length to §=15000.
In this case, the beam energy increases to a point that it
surpasses the depleted wave energy and therefore the pro-
cess is reversed almost at the end of the interaction re-
gion. Reducing the beam intensity by one order of mag-
nitude so that (cope /Q)=0.03, the saturation is avoided,
as in Fig. 5. Further reducing the density by another or-
der of magnitude with (a)pe /Q)=0.01, similar results are
shown in Fig. 6, where the laser pump remains constant
over the interval.

To estimate the upper limit of the beam energy, we
consider the cyclotron radiation loss. Using the follow-
ing expression of the radiated power P:

P=(2e%/3¢)y[(B—(BXB)] (15)
and considering the electron velocity vector of Eq. (1), we
obtain P=(2¢%/3c)y*B2Q% From Eq. (8), the power in-
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FIG. 6. The beam energy y(&) (lower curve) and the vector
potential 4(&) (upper curve) are plotted against the interaction
length £ with 8, =0.098 and (w,, /Q)=0.01.
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put is estimated at P=mc?B,w,a. Equating the two ex-
pressions leads to

v2=(3/2B,)(mc?/e*)(c /Q)w,/Q)a . (16)

With our parameters, the energy upper limit due to radi-
ation loss is ¥ = 10%, which is far superior to the limit im-
posed by Eq. (14) for energy density conservation. It is
important to remark that, for £=2000, the interaction

length of this system is only z=32 cm, which makes the
system very compact.
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